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ABSTRACT 

In addition to the Zeeman magnetic field, there will be created 

another magnetic field due to the spin orbit interaction in the 

structure; converting the up and down spin states to each other. 

The intensity of the magnetic field caused by the spin interaction 

depends on the spin orbit (SO) coupling. In this article, we have 

investigated the internal electric and magnetic fields in a single 

electron defect quantum dot. Moreover, we have demonstrated 

that the magnitudes of the above mentioned internal fields depend 

on the size and the position of the defect inside the quantum dot. 

Therefore, by changing the position and the size of the defect in 

the quantum dot, we can control the effects caused by the interface 

inside the structure. Also, without any external electric fields 

application, we can reset the internal magnetic field to zero and 

thereby prevent the spin flipping.  

Keywords: Quantum dot (QD), Spin orbit interaction, 

internal magnetic field, internal electric field.  

 

I. INTRODUCTION  

One of the best options to realize a single qubit is a confined 

electron in a semiconductor quantum dot, whose spin states will 

represent the logical states of a qubit [1]. The electron inside the 

quantum dot and its peripheral environment are not isolated and  

 

 

 

there exists a coupling between them which limits life time of the 

stored information accordingly. Therefore, it's possible to increase 

the lifetime of any stored information, by controlling the spin-

qubit interaction, until the quantum gates are capable of 

performing the information processing tasks. 

The spin orbit interaction can be the main reason for the spin flips 

in GaAs-type crystal; in which there exists a strong interaction 

between the electrons and acoustic phonons. The combination of 

the two interactions gives rise to a spin relaxation mechanism [2]. 

If the Zeeman magnetic field is the only effective magnetic field in 

the structure nothing happens to the spin up and down in Zeeman 

energy levels and the electron remains in its initial spin state. Also, 

because of the spin orbit interaction there will be a magnetic field 

in the x-y plane that causes the spin up to deviate from the z-axis. 

On the other hand, because of the acoustic phonons existence in 

the GaAs structure, the magnetic field due to the spin orbit 

interaction in the x-y plane, will be rotating with a constant 

magnitude. This rotating field causes the angle of the deviation 

from z-axis continuously increase compared to the previous 

moment until the spin up changes to the spin down state [3]. 

In this article, we have discussed quantum system model and SO 

interaction in the defected quantum dot, next, we have found the 

intensity of the magnetic field due to the spin orbit interaction and 

internal electrical field of a defected single-electron GaAs QD, 

assuming equal electron confinement in x, y and z directions. 

Then we have introduced the simulation outcomes and ultimately 

in the last part we have introduced a summary of the paper. 
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II. RESULTS AND DISCUSSION 

II.1 Model 

In this part, we study the confined electron in a quantum dot 

whose harmonic oscillator potential in the x and y direction has a 

frequency of ω0 and a confinement radius of l, while in the z 

direction is in the form of an infinitive square quantum well with a 

width of L. We have considered the quantum dot in the presence 

of a 1T magnetic field perpendicular to the x-y plane, by writing 

the Hamiltonian of x-y, in the phase coordinate (p2, p1, q1, q2), the 

total Hamiltonian of the system will be as follows [4] 
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II.2 Spin orbit interaction  

A kind of SO interaction called Bychkov-Rashba will appear, 

due to the structure inversion asymmetry, in solid state system [5]. 

Another type is due to bulk inversion asymmetry known as 

Dresselhaus; [6], the sum of the two Hamiltonians will be as 

follows  

( ) ( ),so x y y x x x y yH k k k k                                   (3)   

where, α and β are respectively the coefficients of Bychkov-

Rashba and Dresselhaus interaction by the following relations [7] 
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the first term is due to the internal electric field of the structure, 

defined as follows, while the second term is caused by applying an 

external electric field. 
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and β coefficient with considering interface effects of defect, 
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where, Dresselhaus parameter is defined as follows 
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also the Dresselhaus parameter associated with the interface 

can be obtained as follows 
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and as a result we have obtained α3 = 3.041 mevA°2, γ1,2 = 14.86 

mevA°3 and γ3= 20.25 mevA°3, regarding band structure 

parameters, will be obtained. 

The average of electrical field has been calculated: 
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where in this equation Vext, is the applied electrostatic potential 

energy and since no external electric field is applied to the 

structure it’ll be equal to zero, and Ec is the conduction-band-edge 

profile 
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the last term of the above equation is caused by placing a square 

defect as wide as (d1-d2) inside the confining potential in the z 

direction and as wide as 2l in the x and y directions. 

The average built-in electric field will be obtained 
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as we can see, in the above equation without a defect, the average 

internal electric field will be zero due to the symmetry in the 

structure. 

On the other hand, rotating the equation (3) by 45∘ we obtain 

the spin orbit Hamiltonian as follows [4] 
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and then applying Aleiner transformation [8] to the equation (12) 

and using the second quantization we have the following 

Hamiltonian [4] 
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where in this equation γx, γy that could be defined as 
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comparing equation (14) with the equation (15), that represents 

the interaction of a magnetic field with spin, we may come to the 

conclusion that because of the spin orbit interaction there will 

exist a magnetic field in the x-y plane  
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Fig. 1: The, without defect, quantum dot magnetic field vs the 

confinement width in the z direction for two different confinement 

radius in x-y plane.  

As it could be seen in the Figure 1 without  defect, the internal 

magnetic field in the quantum dot for L=25 nm and l=12.5 nm will 

be approximately 0.001 mT, and by increasing the confinement 

radius in x-y plane the internal magnetic field will also be 

increased. 

 

Fig. 2: The effect of the size and the position of the defect on 

the electric field due to the interface caused by the defect. It could 

be seen that in a quantum well of 25 nm with a square defect in the 

position of d1=12nm and d2=16nm there will be created an electric 

field with a magnitude of 12 kv/cm. 

 

Fig. 3: The effect of the size and the position of the defect on 

the magnetic field due to the spin orbit interaction, it could be seen 

that in a quantum well of 25 nm with a square defect in the 

position of d1=12nm and d2=16nm, the magnitude of the created 

magnetic field would be zero. 

III. Summary 

In this article we have examined the magnetic and electric 

fields created inside the single electron quantum dot of 

Al0.41Ga0.59As/GaAs in which the potential confinement in the x-y 

direction is parabolic and in the z direction is square with an 

approximately infinite barrier and in which we have inserted a 

square defect of Al0.1Ga0.9As. It should be noted that the only 

applied field to this structure will be the Zeeman magnetic field. 

without a defect because of the symmetry inside the structure and 

because the internal electric field is zero, the Rashba interaction 

will be zero and the Dresselhaus interaction will be the only spin 

orbit interaction in the structure and so the internal magnetic field 

will be only due to the Dresselhaus interaction and the internal 

magnetic field is shown in Figure 1. But placing a square defect 

will disturb the symmetry of the structure giving rise to an internal 

electric field and Rashba interaction accordingly. since changing 

the size and the position of the defect in the quantum dot affects 

the magnitude of the internal electric field (Refer to Figure 2) and 

as a result the intensity of the Rashba interaction, by setting the 

size and the position of the defect we can reset the magnitude of 

the magnetic field due to both spin orbit interactions to zero (Refer 

to Figure 3). As it could be seen in Figure 2 inside the quantum 

well of 25 nm in the z direction placing a defect in d1=12nm and 

d2=16 nm can accomplish the mentioned objective.  
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