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ABSTRACT  
In this paper a non-periodic boundary condition and number conserving approach, apart from various techniques 

available, only the temporal evolution of the number of quanta (i.e. phonons) in more sites, i.e. in more domains, is 

detailed in this present investigation for a generalized Klein-Gordon system with important application in 

macromolecules such as DNA. The temporal evolution spectra are also presented. From the approximate meeting 

point of different quanta, we also derive the ‘time of redistribution’ or ‘critical time’ of quanta that is proportional to 

the lifetime of quantum breathers (QBs) in femtoseconds (fs).  

Keywords: Quantum Breathers Life Time, Femto-Second Responses, DNA, K-G Equation. 

 

 

I. INTRODUCTION 

 

Localization is an important aspect for a 

variety of devices under the broad field of 

applied physics. It plays a crucial role in 

qualifying and quantifying a systems’ 

operations. The extent of localization in the 

quantum regime assumes more importance for 

very small-structured materials, e.g. for nano-

structured devices. Now, the question comes, 

how do we get localization in a system or a 

lattice? Localization is evolved mainly either 

by disorder in the lattice (Anderson 

Localization) [1] or by the systems’ interplay 

of nonlinearity and discreteness [2], i.e. our 

attention is diverted towards discrete breathers 

(DBs) or intrinsic localized modes (ILMs). 

Here, we shall discuss mainly about the 

localization due to nonlinearity by adding 

some nonlinear components in the governing 

equation and discreteness.  

Now, the bulk system characterizing DBs, 

or classical DBs [4], were the right tool, but 

when we are dealing with the systems that are 

very small, the laws of classical mechanics are 

not valid, and we have to use a different tool 

of study i.e. quantum physics, and hence it 

brings us to the quantum breathers (QB) [5,6]. 

These QBs are observed in many systems viz. 

ladder array of Josephson junction for 

superconductors [7,8,9], BEC in optical 

lattices/nonlinear photonic lattices [10], 

interacting optical waveguides [11,12], 

cantilever vibrations in micromechanical arrays 

[13], macomolecules such as DNA [14], split-

ring resonator (SRR) based metamaterials in 

antenna arrays [15], two-magnon bound states 

in antiferromagnets [16,17], two-phonon 

bound states (TPBS), i.e. quantum breathers 

due to charge defects in ferroelectrics, as 
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investigated by Fourier Grid Hamiltonian 

method [18]. 

Nanotechnology and molecular electronics 

based on electronic transport through 

biomolecules have recently attracted great 

interest [19]. DNA has a fundamental physical 

interest for the development of DNA–based 

molecular technologies, as it possesses ideal 

structural and molecular recognition 

properties for use in self assembling nano-

devices with a definite molecular architecture 

[20]. Moreover, the robust, malleable one–

dimensional structure of DNA can be used to 

design electronic devices [21, 22], serving as a 

wire, transistor switch or rectifier depending 

on its electronic properties [23, 24], and in 

quantum computation [25].In addition, 

electronic transport plays an important role for 

some biological functions of DNA, such as 

biosynthesis and DNA repair after radiation 

damage. This is of great importance as some 

mutations in living systems and radical 

migrations are critical issues in carcinogenesis 

studies, and may yield insights into damage 

prevention or repair processes [26]. 

However, DNA is nonlinear [27]. At 

biological or room temperatures, DNA 

undergoes large amplitude localized opening 

of the base pairs, which can even exist in 

homopolymers. Although the base pair 

dynamics are detected in some Raman 

scattering experiments, the standard analysis 

of Raman vibrational modes cannot be used to 

analyze the experiments because they are 

based on harmonic or weakly anharmonic 

modes that are not localized. As we are 

primarily focused on quantum localization that 

depends on discreteness and nonlinearity, we 

are inclined to take DNA as a good example 

for the purpose. Thus, the model must include 

the nonlinearities which are associated with 

the large amplitude motions of the bases.  

 

 

II. THEORETICAL MODEL 

 

    The simplest model  is a model at the scale 

of a base pair originally introduced to study 

the thermal denaturation process of DNA by 

Peyrard and Bishop (PB) [28 ,29]. It considers 

a single variable for each base pair, i.e. the 

stretching of the bond (y) connecting the two 

bases. It is defined by the Hamiltonian: 
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     Here, the first term is the kinetic energy of 

the nucleotide of mass m at the nth site of the 

chain, yn is a variable denoting the transverse 

stretching of the hydrogen bond connecting 

the bases at the nth site, the second term 

includes the interaction or coupling constant 

(k), and finally the third term is the on-site 

Morse potential that represents the interaction 

energy due to the hydrogen bonds within the 

base pairs and the term D denotes the well-

depth representing the ‘dissociation’ energy of 

a base pair. It has to be noted that on Euler 

expansion, this potential term gives rise to 

Landau type of anharmonic potential, and as 

per Cuevas et al [30], the PB model with 

Morse potential will lead to a Klein-Gordon 

type of equation. Therefore, this model can be 

safely considered as that of Klein-Gordon 

lattice. Thus, the classical equation of motion 

is again described in terms of nonlinear Klein-

Gordon equation. Although the above concept 

has been modeled by many researchers [31], 

wherein an extra term for dipole-dipole forces 

has been added. However, in terms of 

approximated Bose-Hubbard model, here we 

directly employ second-quantization method 

with bosonic operators by using Eq. (1) 

leading to: 
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    The general Hamiltonian for the Klein-

Gordon equation for order parameter (yn) at 

nth site is written as: 



Subhra Jyoti Mandal et al., Journal of Electron Devices 18, 1575-1581 (2013) 

 1577 

 2

1

42

2

422
 nnnn

n

n yyky
B

y
A

m

p
H .(3) 

                                                       

    The first term is momentum at nth site (pn), 

the second and third terms are nonlinear 

potential formulation and the last term 

contains an interaction constant (k). Here, A 

and B are two constants. The classical 

equation of motion is given by: 
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Now, we rescale time as follows: 


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1
t                  (6) 

and we take 
m

A
2 , where m the electronic 

mass. Now Eq. (5) can be rewritten as: 
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Next, let us introduce creation (a
+
) and 

annihilation (a) Bosonic operators at the n-th 

site as follows: 
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 First we should discuss the physics of the 

terms appearing in some of the above 

equations, since the meaning of the linear 

terms is clear, we comment mainly on the 

nonlinear terms as follows:  

    The terms 4

na , 22

nn aa , 
nn aa 3  are the 

bosonic operators that represent creation of 

four particles at site n, then simultaneous 

‘creation’ and ‘annihilation’ of two quanta at 

site n, and finally creation of three quanta and 

annihilation of one quanta at site n 

respectively. Here, the first and the third terms 

are non-number conserving because same 

number of particles are “not” created and 

annihilated. Other similar terms can be 

explained in this way. 

    Again, the terms 
1



nn aa , 





1nn aa , 
1nnaa  

represent simultaneous tunneling of one 

quanta between neighboring sites i.e. 

simultaneous creation of one quanta at site n 

with a simultaneous annihilation of one quanta 

at site (n-1), then creation of only one quanta 

at sites n and n-1 respectively, and finally 

annihilation of one quanta at site n and n-1 

respectively. Other similar terms can be 

explained in this manner.  

    After having done the second quantization 

as described above, to account for the above 

mentioned terms in a proper way, a general 

basis with non-number conserving of particles 

needs to be formed. Therefore, next, let us 

introduce the basis as follows: 
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where Nnnn knkk  ...21  is the total 

number of particles, and k1, k2, …, kn denotes 

the sites. So, a given number of particles on a 

given number of sites can be generated by the 

mathematical module “compositions” in 

mathmatica. However, with increasing number 

of particles and lattice sites, the Hilbert space 

dimension grows rapidly. Next, let us define 

the creation and annihilation operators as 

follows: 
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In an important work done by Proville [32], 

the non-number conserving methods for four 

sites and an arbitrary number of particles are 

shown. However, the method presented above 

gives a generalized way to solve the system 

for arbitrary number of particles on arbitrary 

number of sites. So, our method is clearly 

distinguished from the other investigations. 

    For the characterization of quantum 

discrete breathers, we need to make the 

Hamiltonian time-dependent. Let us take the 

help of temporal evolution of number of 

bosons at each site of the system 

   titi ntn |ˆ| . We take  i-th 

eigenstate of the Hamiltonian, and then we 

make it time dependent as follows: 

 

      ii

i

ii tiEbt |/exp|  ,         (14) 

 

    where i  and Ei is the i-th eigenvector and 

eigenvalue respectively, and t is time. The 

Planck’s constant (h) is taken as unity and 

  0|iib  for each site i and for a given 

range of t, where (0) stands for the initial 

state.  

    It is pertinent to mention that in contrast 

with the Discrete Non-Linear Schrodinger 

(DNLS) equation, where complete energy 

transfer takes place [33], in case of nonlinear 

K-G lattice, complete energy transfer does not 

take place between the anharmonic oscillators 

and there is a critical time of redistribution for 

the quanta. With the above methodology, we 

can now proceed to deal with some 

applications of non-periodic boundary 

condition approach in different types of 

materials. 

 

 

III. RESULTS AND DISCUSSION 

 

As said earlier, here our main focus is on the 

temporal evolution of the number of quanta in 

different types of materials based on a 

generalized Hamiltonian in Klein-Gordon 

lattice. It is not possible within the present 

scope of the paper to discuss various aspects  

 

 

of different types of materials. However, we 

briefly mention about the Hamiltonian needed 

to describe a given material, e.g. ferroelectric, 

then based on the second quantization, as 

shown in the ref [34]. From the approximate 

meeting point of different quanta, we also 

derive the ‘time of redistribution’ or ‘critical 

time’ of quanta that is proportional to the 

lifetime of quantum breathers (QBs) in 

femtoseconds (fs). This information thus 

derived will have consequences in the 

femtosecond response of DNA 

macromolecules. For the benefit of the 

readers, appropriate references are given to 

introduce the subject very briefly and then the 

relevant spectra are shown in order to 

highlight the ‘application’ of our above 

methodology to these materials to remain 

within the main focus of this paper that has 

implication in the field of applied physics for 

THz applications. 

 

    In the vast ocean of good literature, DNA 

stands apart from any other material both for 

scientific innovation as well as technological 

creation. However, a very brief introduction is 

given here on DNA, particularly in the context 

of denaturation, wherein our  method of 

quantum calculations could be applied with an 

eye on future technology development. In 

recent years, biomolecular modeling has 

received an increasing amount of attention, 

especially focused on the DNA molecule as 

well as protein structures. The basic structure 

of DNA is fairly well understood since the 

discovery of Crick and Watson [35], but it is 

becoming increasingly apparent that structure 

alone does not sufficiently explain its 

functionality that is immensely complex. An 

example is the mechanism leading to bubble 

generation in DNA, in which the two 

polypeptide strands open to allow replication 

of the molecule, processing of proteins or 

complete strand separation (denaturation) 

[36]. The latter issue is of importance vis-à-vis 

the applicability of our generalized technique 

of temporal evolution of the number of 

quanta. 
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Fig. 1: Two-phonon bound state (TPBS) of  DNA at a 

low value of interaction constant k=0.01 

 

Again as a preamble before showing the 

temporal behaviour of a multi-particle system 

that might be relevant to the DNA system of 

macromolecules in a non-periodic boundary 

condition approach, it may be pertinent to 

show two-phonon bound states (TPBS) or 

quantum breather states in a periodic 

boundary condition shown in fig 1. 

It is pertinent to mention that in our earlier 

work on quantum breathers, the variability of  

lithium niobate system was “impurity” content. 

For our DNA system, although no such 

attempt has been made here, the micro-

biologists might find a relevant structural 

parameter for DNA to be useful for 

comparison purpose with TPBS parameters, 

such as energy gap (Eg) between the 

continuum and the localized breather band, 

phonon hopping coefficient (), etc. 

Moreover, the variation of interaction constant 

or coupling in the DNA macromolecular 

system, the single-phonon spectrum width 

(Wph) can also be correlated again to derive 

some important information. Such a variation 

of TPBS parameters with those of DNA, such 

as dissociation energy of the base pair, 

transverse stretching of the hydrogen bond 

connecting the bases, the depth of the 

anharmonic potential wells, etc. will be the 

future directions of study. Here, it is simply 

emphasized that our Hamiltonian upon 

quantization gives rise to certain parameters 

for QB in the DNA macromolecules that are 

possible to be related to some quantum 

parameters to shed light on DNA. 

Following Eq.(14) for D = 0.08 eV, b =4.5
0

A , 

m = 350 amu (see Dauxois et al [29]), k = 1, 

the temporal evolution is shown for 7 quanta 

on 4 sites (0)> = 6,1,0,0>, as seen in 

Fig.2.  
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<n4> <n3>

<n2>

20 40 60 80 100
time

2

1

1

2

NumberOperator

 
 

Fig. 2: For DNA, the temporal evolution spectra for 7 

particles on 4 sites with    0,0,1,6|0|  with 

the parameters values as: D = 0.04 eV, b =4.45 Å , 

 m = 300 amu, k = 1. 

 

      This indicates that with an increase in the 

number of quanta, the QB’s lifetime decreases 

and hence while analyzing femtosecond 

response of DNA for a particular application, 

the temporal evolution spectra could be useful 

in deriving the critical time of redistribution of 

quanta and its relation with the number of 

quanta. This micro-level information on such 

an important macromolecule is of great 

importance in the application of DNA. 

 

 

IV. CONCLUSION 

    The temporal variation of such number of 

quanta or phonons in more number of sites 

(i.e. subunits or domains) is detailed in this 

investigation for a generalized Klein-Gordon 

system with application in interesting 

macromolecules like DNA. As per a non-

exhaustive literature search, it appears that 

there has not been an adequate amount of 

study on the quantum (nonlinear) localization 

of energy and its transfer using DNA. So our 

work with an inclination towards applied 

research paves the way for a direct method to 

study and utilize this DNA denaturation  
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phenomenon to investigate a particular 

medicinal effect on tissues more vividly. One 

could study the effect of such medicines, a diet 

or so, by knowing its D, b and other 

coefficients used in the Hamiltonian and after 

studying its temporal-evolution, the 

composition of the medicines can actually be 

varied so that the cells of a particular animal 

or human may denatured 
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